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Abstract—Power system model parameter values are becoming
increasingly uncertain and time-varying. Therefore, it is impor-
tant to determine the margin in parameter space between a given
set of parameter values for which the system will recover from
a particular fault, and the nearest parameter values for which it
will not recover from that fault. This work presents an efficient
method for computing parameter space recovery margins by
exploiting the property that the trajectory becomes infinitely
sensitive to small changes in parameter value along the operating
point’s region of attraction boundary. Consequently, along this
boundary the inverse sensitivity of the trajectory approaches
zero. The method proceeds by varying parameter values so as to
minimize the inverse sensitivity of the system trajectory. Recent
results provide theoretical justification for the approach. The
efficacy of the method is demonstrated using a modified IEEE
39-bus New England power system test case.

Index Terms—power system dynamics, large disturbance sta-
bility.

I. INTRODUCTION

Faults are inevitable in power system operation. Whether the
system recovers from a particular fault to a desired operating
point depends upon many factors, such as loading pattern,
controller set-points and load characteristics. In studying such
events, it is an important though challenging problem to iden-
tify, for a particular fault, the set of parameter values for which
the system will recover from that fault to a given operating
point. We term this region of parameter space the recovery
region (RR) corresponding to that fault. For a particular fault,
its recovery region boundary is the boundary of the RR in
parameter space, and its recovery margin is the distance from
a given nominal set of parameter values to the RR boundary.

Typical industry practice involves the construction of inner
approximations of the RR boundary known as nomograms in
two or three dimensional parameter space using hyperplanes
[1]. Several extensions to these traditional techniques, such as
[2], have been proposed. However, the number of computation-
intensive dynamic simulations required by the methods in-
creases rapidly with parameter dimension. Consequently, they
are still limited to low dimensional parameter spaces and are
constructed in an off-line process rather than being determined
in a real-time operational context. As the small number of
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parameters of interest are chosen based on operator intuition
and experience, many parameters which could be critical to
system recovery may therefore be overlooked. Furthermore,
the methods are inherently approximate and can be overly
conservative. Hence, it is desirable to develop techniques for
more accurate and efficient computation of the RR boundary
in lower parameter dimensions, and for rapid assessment of
recovery margins in higher dimensional parameter space.

Much of the classical work in rapid assessment of recovery
margins has involved the use of energy functions to estimate
the region of attraction (RoA) of the desired operating point
[3], [4], [5], [6]. However, many industry standard power
system models are not amenable to the development of en-
ergy functions and, even when such functions exist, their
RoA estimates tend to be overly conservative in practice.
Furthermore, these methods require knowledge of a particular
equilibrium point, called the controlling unstable equilibrium
point (CUEP), with specific dynamical properties. Locating
such points is computationally intractable for realistic power
systems. Finally, the methods are restricted to parameters
which do not influence post-fault dynamics, such as the
fault clearing time, which excludes many important system
parameters.

Recently, efficient methods were developed to numerically
compute the RR boundary to arbitrary precision in two dimen-
sional parameter space, and to determine the recovery margins
in arbitrary dimensional parameter space, without the use of
energy functions and for parameters which influence post-fault
dynamics [7], [8]. However, they still require prior knowledge
of the CUEP. This paper improves upon that recent work by
presenting techniques which do not require knowledge of the
CUEP.

The key idea is that, for an initial condition which lies ex-
actly on the RoA boundary, its trajectory is infinitely sensitive
to small perturbations; incremental changes in initial condition
could push the trajectory either inside or outside the RoA. As
small changes in parameter values cause perturbations to the
post-fault initial condition and the RoA boundary, the trajec-
tory corresponding to a parameter value on the RR boundary
becomes infinitely sensitive to small changes in parameter
values. Algorithms are introduced to compute parameter values
on the RR boundary by varying parameters so as to maximize
trajectory sensitivities. For implementation, however, it is
advantageous to minimize the inverse sensitivities.
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These ideas are applied to find the nearest point on the
RR boundary for a specified direction in parameter space, and
to numerically trace the RR boundary for two dimensional
parameter space. These developments also motivate algorithms
for computing recovery margins in arbitrary dimensional pa-
rameter space. For clarity of presentation, limits on AVR
and PSS controller states are not included in this work,
but these limits can be incorporated into the algorithms by
computing trajectory sensitivities for hybrid systems as in
[9]. The theory justifying the algorithms has recently been
extended to incorporate discrete events, such as controller
limits [10].

The paper is organized as follows. Section II provides the
theoretical setting and justification for the algorithms, with
the details of the algorithms given in Section III. Section IV
introduces the IEEE 39-bus New England power system test
case, and Section V demonstrates the algorithm characteristics.
Section VI offers some concluding remarks.

II. THEORY

Power systems are commonly modeled as a system of
differential and algebraic equations (DAE):

ẋ = f(x, y) (1)
0 = g(x, y) (2)

where x ∈ Rn represents dynamic states such as rotor angles
and frequencies, y ∈ Rm represents algebraic states such as
voltages and currents, f : Rn+m → Rn, and g : Rn+m → Rm.
For simplicity of presentation, in the subsequent discussion
we will assume that f and g are continuously differentiable,
but recent theoretical work [10] has shown that the following
results extend to a large class of hybrid systems which
permit restricted switching behavior, such as controller limits,
provided grazing of switching surfaces does not occur. Such
hybrid dynamical systems more accurately reflect realistic
power system behavior.

The desired steady state operating point is given by a stable
equilibrium point (SEP) of (1)-(2) which has an associated
RoA. Consider a particular fault, and let its post-fault initial
condition be the system state at the instant when the fault
clears. Let RP be a space of parameters of the system, and let
p ∈ RP denote a set of parameter values. As the parameter
value p varies, so do the RoA and the post-fault initial
condition. Let x(p, z0, t) denote the dynamic states in the
solution of (1)-(2) for parameter value p from initial condition
z0 for time t. Let z(p), with z : RP → Rn, denote the post-
fault initial condition corresponding to parameter value p.

Trajectory sensitivities are partial derivatives of the states
with respect to initial conditions or parameters. They can
be efficiently computed as a byproduct of the numerical
integration of the underlying dynamics [9], [11]. For any
parameter p, define the trajectory sensitivity χ (of the dynamic
states) with respect to p as:

χ(p, t) :=
∂x(p, z(p), t)

∂p
. (3)
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Fig. 1. The sensitivity of the frequency of a classical machine to generator
mechanical power as a function of time, as the generator power approaches
the RR boundary.

This is the partial derivative of the dynamic states of the
system at time t starting from post-fault initial condition z(p).
These trajectory sensitivities measure the sensitivity of the
system dynamic states to small changes in parameter value.

To develop intuition for the behavior of trajectory sensitiv-
ities for parameter values near the RR boundary, consider the
simple example of a single machine infinite bus with classical
machine dynamics. A fault in this system is modeled by setting
the electrical torque to zero until the fault is cleared. Fig. 1
shows the sensitivity of the frequency to generator mechanical
power as that power value approaches the RR boundary.
Observe that the sensitivities grow larger and larger as the RR
boundary is approached. More generally, the intuition behind
this is that at the RR boundary the trajectory becomes infinitely
sensitive to small changes in parameter values, because small
perturbations in parameter values could push it to either side
of the boundary of the RoA - causing it either to recover from
the fault or not.

To generalize the above intuition, define the scalar function
G : RP → R by:

H(p, t) =
1

||χ(p, t)||1
, (4)

G(p) = inf
t≥0

H(p, t), (5)

where the matrix norm ||M ||1 =
∑
i,j |Mij | for any matrix

M . So, G(p) represents the minimum over time of the inverse
of the norm of the trajectory sensitivities. Hence, trajectory
sensitivities diverging to infinity is equivalent to G approach-
ing zero. Under practical assumptions, for a large class of
nonlinear systems the following result has been proven in
[12]: G is well-defined, continuous, non-negative, and the RR
boundary is equal to G−1(0). In particular, this implies that
solving for p such that G(p) = 0 will drive p onto the RR
boundary. This motivates the development of algorithms for
computing the RR boundary.
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III. ALGORITHM

Based on the theory of Section II, the RR boundary consists
precisely of the parameter values p such that G(p) = 0. This
section formulates algorithms for finding the closest point on
the RR boundary in the case of one dimensional parameter
space, and for numerically tracing the RR boundary in two
dimensional parameter space.

A. One Dimensional Parameter Space

To find the closest point on the RR boundary, the goal is to
solve

G(p) = 0. (6)

Earlier theoretical work [13] and numerical experiments [14]
suggest that G is approximately affine for parameter values
near the RR boundary. Motivated by this linear structure, we
solve (6) using Newton-Raphson with backtracking, which
is an iterative algorithm that converges rapidly for affine
equations. At each iteration s, we perform a full time-domain
simulation to evaluate G and its derivative DG. The results
of that simulation also reveal whether ps lies inside or outside
the RR, based on whether the system recovers or does not
recover to the desired SEP. Let k be the largest iteration
with k ≤ s such that pk lies in the RR. In other words, k
represents the most recent iteration at which pk lies in the
RR. Let κ =

(
1
2

)s−k
denote the step length. We perform the

update

ps+1 = pk − κ G(pk)/DG(pk). (7)

If ps lies inside the RR, so that k = s, then κ = 1 and this
reduces to the standard Newton-Raphson update. On the other
hand, if ps lies outside the RR, then we start from the most
recent value pk that lies inside the RR, determine the direction
of its Newton-Raphson update, and do a backtracking line
search along that direction until a parameter value inside the
RR is reached. In particular, the backtracking is performed
by reducing the distance traveled along the Newton-Raphson
search direction by a factor of two at every iteration until the
RR is encountered.

Performing the update of (7) requires computation of the
derivative DG. For any parameter value p that lies inside the
RR, there exists a time t̂(p) such that

G(p) = min
t≥0

H(p, t) = H(p, t̂(p)). (8)

Since t̂(p) is the point at which H(p, t) achieves a minimum
in time, it is an extremal point of H(p, t), which implies that

∂H(p, t̂(p))

∂t
= 0. (9)

We compute

DG(p) =
d

dp
H(p, t̂(p))

=
∂H

∂p
(p, t̂(p)) +

∂H

∂t
(p, t̂(p))

dt̂

dp
(p)

=
∂H(p, t̂(p))

∂p

where the last step follows by substituting in (9). So, to
compute DG it suffices to compute ∂H

∂p . This is given by

∂H

∂p
(p, t) =

−∂χ(p,t)∂p · sign(χ(p, t))

||χ(p, t)||21
(10)

where for any vectors v and w, (sign(v))i = 1 if vi ≥ 0,
(sign(v))i = −1 if vi < 0, and v · w =

∑
i viwi denotes

the standard Euclidean dot product. Note that (10) includes
∂χ(p,t)
∂p which is a second order trajectory sensitivity and

can be obtained efficiently as a byproduct of the underlying
integration [11], [12].

Computation of G and its derivative DG proceeds as
follows. During a time-domain simulation corresponding to
parameter value ps, the time t̂(ps) at which H(ps, t) achieves
its minimum is observed. Then G(ps) = H(ps, t̂(ps)), and
DG(ps) = ∂H

∂p (p
s, t̂(ps)) is computed using (10). These are

then used to perform the update of (7) and compute ps+1. This
process is repeated iteratively until G(ps) converges to zero,
which causes ps to converge to the RR boundary.

B. Two Dimensional Parameter Space

By the results of Section II, the RR boundary is equal to
G−1(0). In two dimensional parameter space, G : R2 → R
is one equation with two free variables (parameters), so the
RR boundary is typically a one dimensional curve because
there is one more free variable than equations. The goal is
to numerically trace this curve by iteratively computing a
sequence of points along the curve. As numerical precision
is finite, instead of tracing the curve G−1(0), we trace the
curve G−1(ε) for some small ε > 0. This approximates the
true RR boundary to arbitrary precision, with the tolerance
level set by ε. Tracing the curve G−1(ε) is accomplished using
the following continuation method, which alternates between
a predictor step and a corrector step, as shown in Fig. 2. Let s
denote the current iteration, and let ps be the current parameter
values on the curve. Then ps must satisfy G(ps) = ε.

The predictor step generates a first order prediction of the
next point on the curve, and proceeds as follows. First, we
obtain the unit tangent vector to the curve G−1(ε) at ps. This
can be done by noting that DG(ps) is orthogonal to the curve
G−1(ε), because G is constant along this curve so its derivative
DG must be orthogonal to it. Then, any vector orthogonal to
DG(ps) must be tangent to G−1(ε) since the parameter space
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Fig. 2. The predictor-corrector continuation process for iteratively tracing a
sequence of points along a curve.

is exactly two dimensional. We can compute DG by noting
that,

DG(p) =
[
∂G
∂p1

(p) ∂G
∂p2

(p)
]

(11)

∂G

∂pi
(p) =

∂H

∂pi
(p, t̂(p)), for i ∈ {1, 2}, (12)

where the latter equation follows since G(p) = H(p, t̂(p)) for
any p inside the RR, by the argument in Section III-A. Define
the following notation for i, j ∈ {1, 2}:

χi(p, t) :=
∂x(p, z(p), t)

∂pi

χij(p, t) :=
∂2x(p, z(p), t)

∂pi∂pj
.

By an analogous argument to that in Section III-A, for i ∈
{1, 2} we have

∂H

∂pi
(p, t) =

−χ1i(p, t) · sign(χ1(p, t))

||χ(p, t)||21

− χ2i(p, t) · sign(χ2(p, t))

||χ(p, t)||21
.

This formula can be used to compute DG(ps) at each iteration.
Then, writing DG(ps) = [a b], a tangent vector to the curve is
given by [b −a]T . Let η denote [b −a]T divided by its norm,
so that η is the unit tangent vector to the curve. Let κ ∈ R be
the step size for the prediction. The predicted point is given
by

ppred = ps + κη. (13)

Once a predicted point has been obtained, the next step
is to correct it back onto the curve G−1(ε). To do so, an
orthogonal projection from the predicted point onto the curve
is performed. In particular, the next point on the curve ps+1

is chosen such that the vector (ps+1− ppred) is orthogonal to
the vector (ppred − ps), so that

(ps+1 − ppred)T (ppred − ps) = 0.

Using (13) and the fact that η is a unit vector so ηT η = 1,
the above constraint simplifies to

(ps+1 − ps)T η − κ = 0. (14)

So, correction back onto the curve requires solution of the
system of equations:

F (ps+1) :=

[
G(ps+1)− ε

(ps+1 − ps)T η − κ

]
= 0. (15)

To solve F (ps+1) = 0, which consists of two equations with
two free variables (parameters), the standard Newton-Raphson
algorithm is applied. This requires the derivative of F , which
is given by

DF (ps+1) =

[
DG(ps+1)

ηT

]
.

Repeating iterations of Newton-Raphson will find ps+1 such
that F (ps+1) = 0, which ensures that G(ps+1) = ε, so ps+1

is on the curve G−1(ε). The prediction and correction steps
are then alternated iteratively until the RR boundary has been
traced.

IV. MODEL

The IEEE 39-bus New England power system test case
shown in Fig. 3 will be used to illustrate the algorithms of
Section III. Generators are modeled using a 4th order machine
model as given in [3], AVR and PSS models are based on the
IEEE standard models PSS 1A and Exciter ST1 [15], and the
full set of dynamic equations and system parameters are given
in [16]. As the theory and algorithms above are presented for
smooth systems, the test case is modified to remove the limits
on AVR and PSS controller states. However, future work aims
to reintroduce these limits, and recent theoretical developments
[10] suggest that these algorithms should be successful with
the controller limits included as well. A fault occurs at bus 16,
and is cleared after 0.2s. The fault is modeled as a switched,
constant shunt reactance with Xfault = 0.001p.u.

Many model parameters of the system are of interest for
recovery considerations. A background load scaling factor
(SF) is introduced which multiplies the active and reactive
power background loads at every bus in the network. As
background load is time-varying and uncertain, it is a natural
choice for assessing system recoverability. An AVR gain SF
multiplies the AVR gain for every generator, and helps to
capture the impact of controller tuning on system stability. The
load active and reactive power are represented by the standard
exponential voltage load model. The voltage exponents are
set equal for all background loads. As load dynamics are
notoriously difficult to model, this parameter serves to quantize
the impact of uncertain load behavior on system recoverability.

V. RESULTS

The algorithms of Section III were demonstrated on the
test case of Section IV. The dynamic states appearing in
the first and second order trajectory sensitivities used in
Section III were restricted to the generator dynamic states to
avoid the possibility for the sensitivities of internal controller
states to overshadow the sensitivities of the physical generator
states. The algorithm for one dimensional parameter space,
which finds the closest point on the RR boundary to an
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Fig. 3. IEEE 39-bus New England power system.
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Fig. 4. G as a function of background load scaling factor (blue line). The
iterations of the one dimensional parameter space algorithm are labeled in
order (circles), including both those that lie outside (red) and inside (magenta)
the RR.

initial given parameter value, was applied with the parameter
of interest being the background load SF. Fig. 4 illustrates
that the algorithm converged to the RR boundary in just 5
iterations (6 simulations total). Furthermore, it shows that G
is approximately linear near the RR boundary, as predicted
by the theory in Section II. Hence, this algorithm rapidly and
accurately determines the nearest point on the RR boundary
in one dimensional parameter space.

To observe the approach to instability, note that under
stressed conditions the first generator to go unstable is genera-
tor 2. Fig. 5 shows the frequency of generator 2 as a function
of time for all values of the background load SF which lie
inside the RR that were attained during the algorithm of Fig. 4.
Observe that as the background load SF approaches the RR
boundary, the fluctuations in the frequency of generator 2 grow
larger, indicative of proximity to instability.

Once a point on the RR boundary has been identified, the
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Fig. 5. Frequency of generator 2 as a function of time for the values of the
background load scaling factor that correspond to the iterations (inside the
RR) of the one dimensional algorithm.

continuation method described in Section III can be applied
to numerically trace the RR boundary in two dimensional
parameter space. This algorithm was applied for the two
dimensional parameter space consisting of the AVR gain SF
and the load voltage exponent. The tolerance was set to
ε = 10−5. Fig. 6 shows the RR boundary and the RR in
this parameter space. If the AVR gains are set about 5% less
than nominal (SF=1.0), the system will not recover regardless
of the load exponent. For slightly higher AVR gain SFs, a
nonempty RR emerges. In this regime of the AVR gain SFs,
if the load voltage exponents are sufficiently low then the
parameter values will lie outside the RR. In other words,
the system becomes unable to recover as the loads approach
constant power loads. This is consistent with standard intuition
that constant power loads have a more detrimental impact on
system stability than constant impedance loads. However, if
load voltage exponents are sufficiently high then the parameter
values will also lie outside the RR. Hence, there are two ranges
of load exponents outside the RR, corresponding to loads
which approach constant power, and also corresponding to
loads which approach constant impedance. The latter behavior
is counterintuitive, and serves as an example of how these
algorithms have the potential to reveal unexpected dynamic
behaviors which would not have been observed otherwise.

To observe the influence of variations in load voltage
exponents on system recovery, recall that generator 2 is the
first generator to go unstable as a result of the fault. Fig. 7
shows the relative angle of generator 2 as a function of time
for a fixed AVR gain SF and for several load voltage exponent
values. For sufficiently high or sufficiently low exponents,
the system goes unstable and is unable to recover from the
fault. For exponents near the top and bottom of the RR of
Fig. 6, angle fluctuations are larger and occur later in time. For
exponent values between these upper and lower RR boundary
exponents, the angle shows smaller fluctuations with a peak
occurring earlier in time. Hence, for high or low load voltage
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exponents, angle fluctuations grow and lead to instability,
whereas for an intermediary range of exponents, the angles
are able to recover from the transient disturbance. Overall, the
algorithms were successfully applied to the modified IEEE 39-
bus power system to find the closest point on the RR boundary
in one dimensional parameter space, and to numerically trace
the RR boundary in two dimensional parameter space.

VI. CONCLUSION

This work developed algorithms to find the closest point on
the RR boundary in one dimensional parameter space, and to
numerically trace the RR boundary in two dimensional param-
eter space. Unlike current industry practice, these algorithms
are not approximate or conservative, and are able to efficiently
compute the RR boundary to arbitrary precision. Furthermore,

the proposed algorithms can handle parameter dependent post-
fault dynamics, are generalizable to hybrid systems, and do not
require prior knowledge of the controlling unstable equilibrium
point.

The algorithms are demonstrated on the modified IEEE 39-
bus New England power system, and reveal an unexpected
negative influence of constant impedance loads on system
recovery that would not have been identified otherwise.

Extending these algorithms to the computation of recovery
margins in arbitrary dimensional parameter space, similar
to the approach in [12], is currently underway. This will
provide a tool for identifying parameters that are critical to
system stability but may have been overlooked, as well as
a quantitative metric for recovery assessment. Future work
will explicitly illustrate the algorithms with the AVR and PSS
controller limits included, and will overlay the RR boundaries
for multiple faults.
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